
Virtual machines
The State of the Art

Bachelor Thesis for Computer Science

Erik van der Kouwe
Student number 1397273
E-mail: erik@erisma.nl

Vrije Universiteit Amsterdam
Faculteit Exacte Wetenschappen

Afdeling Wiskunde en Informatica

Supervised by
Andrew S. Tanenbaum

30 July 2006

Virtual machines – the state of the art – 30 July 2006

Abstract
Virtual machine monitors partition a single physical
machine into multiple virtual ones. This can be
useful for several important applications, such as
running multiple isolated servers on a single
machine, testing and debugging software, using
possibly malicious software and building honeypots.

The widely used IA-32 architecture does not
natively support virtualisation. We compare several
state-of-the-art methods used to circumvent this
problem. Our comparison includes dynamic binary
translation, paravirtualisation, previrtualisation,
operating system level partitioning, application
virtual machines and the
recent “Virtual Machine
Extensions” added to
IA-32 by Intel. Our
criteria for this
comparison include
performance,
robustness, relationship
with the host operating
system and portability.

We use the results of the
comparison to determine
which techniques are
most suitable for which
applications. We find
that the new hardware
virtualisation support
looks very promising for
many applications, but may not completely replace
other methods.

1 Introduction

What is a virtual machine?
Virtualisation is a technique which allows one to
partition a computer system in multiple completely
separate systems. Each of these provides a software
environment which is very similar to that of a
complete computer. Such an environment is called a
virtual machine (VM).

One will typically want to install an operating
system on a virtual machine to be able to run
applications. This guest operating system assumes
that it has complete control of the computer, and it
will attempt to access it's hardware. This cannot be

allowed, since the hardware is shared with guest
operating systems running on other virtual machines.
A program called virtual machine monitor (VMM)
or hypervisor is needed to make sure all resources
are shared properly.

The role of a VMM dividing resources between
operating systems differs from that of a kernel
dividing resources between applications. The main
difference is that the latter typically provides an
abstraction of physical devices, while the former
does not change the abstraction level [16]. The
VMM should present a faithful low-level interface to
virtualised hardware.

The VMM itself may have full hardware access, but
it can also can be a
normal application
running on an operating
system. In this case the
operating system on
which the VMM runs is
called the host operating
system. This situation is
shown in figure 1.

Why are virtual
machines useful?
Virtual machines have
many practical uses in
many different kinds of
environments.

Servers

One can use virtual machines to run multiple
isolated virtual servers on a single physical server.
This allows hardware to be used more efficiently
and decreases hardware costs. For an internet
hosting company this can be used to allow
customers full access to a virtual server without
endangering other servers on the same physical
machine.

Another advantage of using virtual servers is the fact
that they can easily be moved to other computers.
Typically the interface to the virtualised hardware
does not depend on the actual hardware, so the guest
operating system does not even notice the move.
This can be used to minimise downtime after
restoring a backup to different hardware.

Software development

Virtual machines have their uses in software

2

Figure 1: A computer running two virtual machines
Physical machine

Hardware

Host operating system

Virtual machine monitor

Virtual machine 1 Virtual machine 2

Virtual hardware

Guest OS

App App

Virtual hardware

Guest OS

App App

Virtual machines – the state of the art – 30 July 2006

development as well. They provide a way to switch
between different (versions of) operating systems
easily and quickly. This is very useful for testing and
debugging software on multiple platforms.

VMMs may also allow the user to make snapshots of
virtual machines. This means one can test something
and revert the machine to it's original state
afterwards. This is again very useful for testing and
debugging.

Yet another application for development is to debug
low-level software, such as kernels. A VMM could
provide a kernel debugger with much information
about what is going on. It also makes recovery from
crashes easier, since one can simply use a previous
snapshot.

Untrusted software

Another application which is especially useful
nowadays is the ability to run untrusted software in
an environment where it can do no damage.
Examples are running potential malware
downloaded from the Internet and opening
suspicious e-mail attachments. If the VMM is secure
enough, there is no way for malware and viruses to
infect the physical machine or other virtual
machines.

Honeypots

Finally virtual machines provide an easy way to
build secure “honeypots”. These are unprotected
machines which are connected to the Internet. The
purpose is to get information about new methods to
exploit flaws in operating systems and applications.
By using virtual honeypots, these exploits are less
likely to do damage to the system inself. This may
make investigation and recovery easier. They also
allow having multiple honeypots with different
(versions of) operating systems running
simultaneously.

2 Related work
There are several papers comparing different
virtualisation techniques. Kiyanclar [10] compares
several virtualisation programs to select the one
which is most suitable for secure on-demand cluster
computing. His criteria are similar to ours. Nanda
and Chiueh [12] discuss some implementation
details for a large number of VMMs. Both focus
more on specific implementations than on
characteristics inherent to techniques. Rose [15]

discusses advantages and disadvantages of full
system virtualisation and paravirtualisation.

In-depth articles comparing virtual machines are
typically limited to a single technique. An example
is Gaugh [5], who compares the Java Virtual
Machine and .NET, which are both application
virtual machines. Ars Technica [2] compares two
major dynamic binary translation VMMs, but
considers only performance and ease of use.

A large comparison table of virtualisation software
is found on Wikipedia [21]. This table provides a
simple overview over the basic characteristics of
many virtualisation programs. The comparison
focusses more on software than on techniques and
more on features than on applications. Note that, at
the moment of writing, this article is considered to
be in need of expert attention and clean-up.

3 Theoretical background

Popek and Goldberg
Popek and Goldberg [13] investigated sufficient
conditions which allow a computer architecture to
support virtual machines. They defined a virtual
machine as “an efficient, isolated duplicate of the
real machine”. Although their research was
motivated by the question why IBM 360/67 could
support virtual machines while DEC PDP-10 could
not, their criterion still applies to modern
architectures.

Central to Popek and Goldberg's theorem is the
distinction between supervisor and user modes. The
supervisor mode allows complete access to the
machine and is typically used by operating system
kernels and VMMs, while the user mode is more
limited and is typically used by applications. They
further define a trap operation, which places the
processor in a stored state (typically the supervisor
mode) while saving the current state.

Popek and Goldberg consider some properties that
individual instructions can have:

● A privileged instruction performs a trap
operation in user mode, but does not trap in
supervisor mode;

● A control sensitive instruction can change
the operating mode or virtual memory
mappings;

● A behaviour sensitive instruction executes in

3

Virtual machines – the state of the art – 30 July 2006

different ways depending on operating mode
or virtual memory mappings;

● A sensitive instruction is control sensitive
and/or behaviour sensitive.

Having defined these terms, we can state the
theorem: “A virtual machine monitor may be
constructed if the set of sensitive instructions for the
computer is a subset of the set of privileged
instructions”. The virtual machine is constructed by
letting the VMM operate in supervisor mode and the
virtual machine in user mode. This way the monitor
can emulate sensitive instructions, since it is notified
by a trap operation. Non-sensitive instructions can
safely be executed directly.

Virtualisability of IA-32
The IA-32 architecture is very widely used in
personal computers and servers which run Windows,
Linux or, more recently, Mac OS. It evolved from
(and is still compatible with) the instruction set
architectures used by the 8086 and it's successors
and is therefore also commonly known as x86. The
Pentium D and Core Duo chips from Intel and
Opteron and Athlon 64 X2 from AMD are examples
of modern implementations of IA-32.

IA-32 defines four security rings numbered 0
through 3. Ring 0 can be considered the supervisor
mode, while the other rings correspond with the user
mode. The architecture defines privileged
instructions which, when executed in user mode,
trap by calling an interrupt handler in ring 0. Virtual
memory is implemented through segmentation and
paging. Segments are identified by 16-bit segment
selectors which contain the number of the least
privileged ring allowed to access them. The
operating system's perspective of IA-32 is described
at length in [7].

Robin and Irvine [14] have investigated the IA-32
architecture and have found many instructions that
are sensitive, but not privileged. An example is the
“PUSH CS” instruction, which pushes onto the stack
the selector for the segment containing the currently
executing code. Since this segment selector contains
the number of the current security ring, this
instruction is behaviour sensitive.

The lack of native virtual machine support has lead
to the use of many different techniques on the IA-32
platform. The approaches we mention are applicable
to other architectures, but we will focus on IA-32.

We will also discuss two approaches which are
highly similar to virtual machines and provide the
same advantages, but which are not virtual machines
according to the definition we presented before.

Recently Intel has added true virtualisation support
to their newest IA-32 chips by including an
extension instruction set called “Virtual Machine
Extensions”. We will discuss this technology as
well.

4 How to compare
Before one can meaningfully compare virtual
machine techniques, one has to determine which
criteria to use to distinguish the methods. We will
use several characteristics to do this, each of which
may or may not be relevant depending on the reason
we use virtual machines.

Performance
One important criterion is performance. Good
performance is desirable for each of the applications
we mentioned, and essential for some of them.

From the applications we discussed, performance is
most important in case virtual machines are used for
isolated server consolidation. The more efficient the
VMM is, the more virtual servers can be run on a
single physical server. This means that solutions
which perform better require fewer servers.

When used for debugging, a VMM which performs
well is pleasant, but not essential. The same goes
when virtual machines are applied to isolate
untrusted programs or to secure honeypots.

Note that we will focus on techniques rather than on
their implementations. As such, our aim is not to
compare benchmark results. Instead we will look at
the performance potentials inherent to the methods
we evaluate.

Robustness
Virtual machines should provide absolute isolation
and, as such, perfect security. The only means for
communication between virtual machines should be
the virtual network connection. Unfortunately,
perfection is hard to come by. Both the VMM and
the host kernel are pieces of software and, as such,
we can expect them to contain bugs. We will
therefore evaluate the robustness of the security in
the presence of bugs. We will find that in some cases

4

Virtual machines – the state of the art – 30 July 2006

the VMM can increase robustness, while in others
the isolation entirely depends on the ability of the
kernel to isolate applications.

Secure isolation is the core feature when virtual
machines are applied to isolate untrusted programs
or to secure honeypots. It is also of utmost
importance when used for server consolidation,
since a breach of security would mean down-time. In
each of these cases we can expect malicious
attempts to break security.

For debugging purposes we rely less on the
robustness of VMMs. Although crashes of the
virtual machine are possible and should not effect
the physical machine, we do not expect any malice.

Relationship with host operating system
A VMM can have different kinds of relationships
with the host operating system. It may be an
unprivileged application, but it may also be require
cooperation from inside the kernel. A third
possibility is that no host operating system is
present. In this case one could say the VMM itself
acts as a minimal operating system.

When used for debugging purposes, it is desirable
that the VMM can run as an
application. This avoids restarting
and allows one to run other
applications besides the VMM
while debugging. It is preferable
that kernel cooperation is not
required, because one would
typically want to avoid installing
kernel-mode drivers since these
may make the operating system
less stable. Another problem is
that installing such a driver is
normally only allowed for the root
user. The same reasoning goes
when virtual machines are used
for running untrusted applications.
Note that need for kernel support
is not a problem if the feature is
integrated in the kernel by default.

For servers it is preferred that the
VMM run directly on the
machine, without a host operating
system present. This reduces
overhead and may be more stable.
It does require that the server
hardware is supported by the

VMM.

For honeypots the relationship with the operating
system is not very important.

Portability to multiple guests
Being able to support many different guest operating
systems without additional effort is important when
virtual machines are used for debugging
applications. A developer typically wants to test not
only on multiple operating systems, but also on
different versions of the same operating system. The
same goes for honeypots, since different versions
may have different vulnerabilities.

When virtual machines are used for server
consolidation or running untrusted applications, it is
sufficient that one recent version of each needed
operating system is supported.

5 Techniques in use

Dynamic Binary Translation
Dynamic binary translation can be seen as an
advanced way to do emulation. In case of pure

emulation, the host software
implements the instructions that
are available on the CPU. This
allows it to interpret the
instructions supplied by the guest.
As such, emulation is the most
obvious approach to build virtual
machines on hardware platforms
that have no native support for
them. Bochs is an example of a
program which emulates IA-32
CPUs.

Unfortunately pure emulation
provides very poor performance,
since executing a single guest
instruction typically takes many
instructions on the host machine.
This lack of efficiency means that
an emulated machine does not
satisfy the Popek and Goldberg
definition for a virtual machine.
As such, we will not consider
emulation separately.

Dynamic binary translation
overcomes the performance

5

Figure 2: Dynamic binary translation

Find in cache
block starting at
instruction pointer

Translate code
until next branch
and add to cache

Execute
translated block

directly

Found Not found

Handle interrupt
and update

instruction pointer

End of block
or interrupt

Virtual machines – the state of the art – 30 July 2006

limitations of emulation by translating the
instruction stream to host instructions which can be
executed natively. In this step sensitive instructions
are replaced with calls to the VMM. The translated
instruction stream can be cached. Because of this,
only a small part of the time is spent on translation.
The main loop of a dynamic binary translation
VMM is shown in figure 2.

Ung and Cifuentes [18] provide details on how one
can implement binary translation.

Translation can be more efficient if the host has the
same architecture as the guest, and many of the
available dynamic binary translation VMMs only
support running IA-32 guests on IA-32 hosts.

Dynamic binary translation is widely used. Market
leader VMWare created several VMMs which are
based on this technique: VMWare Workstation runs
as an application on Windows and Linux and
VMWare ESX server runs without an operating
system. The architecture of the virtualisation
software is described in [20]. For the server version,
this software runs on a proprietary microkernel
operating system [19].

Another example of a VMM which uses dynamic
binary translation is QEMU. This program provides
more insight in the implementation of this technique,
since it is open source. It's author describes the
internals in [4]. QEMU translates CPU instructions
to C code, which is compiled using the GCC
compiler. This results in very good portability, since
GCC has been ported to many platforms. Translation
happens in blocks ending at the next potential jump
or important change in CPU state (such as changing
mode of operation). These blocks are stored in a
cache. Pages containing translated code are marked
write-only, and by handling the resulting protection
faults QEMU can invalidate the
cache when code changes.

Other examples of virtualisation
products which use dynamic
binary translation include
Microsoft VirtualPC and
VirtualServer, Parallels
Workstation and Serenity Virtual
Station.

With dynamic binary translation
much of the code is translated
only once and can be executed
natively. We therefore expect the
chaining of translated blocks to

have the most important impact on performance.
Benchmarks show [2] that a highly optimised binary
translation VMM such as VMWare Workstation can
reach good speeds, but worse results should be
expected in branch-intensive or self-modifying code.

The host kernel should ensure that the guest code is
executed in a user mode ring, typically ring 3. All of
this code is generated by the VMM. This provides
the additional guarantee that the guest cannot
attempt to call the host kernel directly. This results
in double protection, making it unlikely that a single
bug in either the kernel or the VMM compromises
the isolation. As such, dynamic binary translation
can be very robust.

Our examples show that binary translation VMMs
can be highly portable. In principle, the guest
operating system does not matter at all, as long as
the VMM faithfully implements all hardware
interfaces it requires.

A binary translation VMM can run either as an
unprivileged application within an operating system
or with full control without operating system. We
have seen examples of both.

Paravirtualisation
The approach we described before tries to mimic the
environment in which the operating system is
running on a real machine. For this reason it is also
called full system virtualisation. More efficient
virtualisation may be possible if the VMM
cooperates with the guest operating system. This
approach is called paravirtualisation.

Xen is an example of a virtual machine monitor
which uses paravirtualisation. It requires that guest
operating systems be changed to make their kernel

run in ring 1 instead of ring 0. The
ported kernel uses “hypercalls” to
replace sensitive instructions. This
is done by placing parameters in
registers and then calling an
interrupt handler. Xen itself runs
in ring 0. The approach is shown
in figure 3.

Xen's creators ported Windows
XP, Linux and BSD to run on Xen
[3], although Windows is not
publicly available. Minix for Xen
is also available, and the
document [9] describing the

6

Figure 3: Paravirtualisation

Execute code
directly

Handle interrupt
(may be hypercall)

Interrupt

Virtual machines – the state of the art – 30 July 2006

porting process shows how a simple microkernel
operating system can be ported to Xen.

Another example of paravirtualisation is User Mode
Linux. This is a modified version of the Linux
kernel which is capable of running as a user-mode
application inside Linux.

Paravirtualisation can be expected to be very fast,
since all code can be executed without runtime
translation. The only overhead is having to use
hypercalls instead of accessing hardware directly.
This may affect the performance slightly, but this is
unavoidable since direct hardware access is
unacceptable in a virtual machine.

With paravirtualisation, code is not translated. This
means that we must be careful not to allow it any
access to the physical machine. Since all of this code
runs in user mode, the only way out should be
calling the host kernel (at least, if the host kernel
properly sets up permissions). This should be
prevented, as it might allow virtual machines more
access than they are entitled to.

If direct access to the host kernel is prevented, then
the security of a paravirtualising VMM relies on the
ability of the host operating system to securely
isolate applications. If no host operating system is
installed, such protection should be provided by the
kernel included in the VMM. In both cases the
robustness can be expected to be at the same level as
the protection between applications delivered by the
host operating system. Paravirtualisation lacks the
double security provided by binary translation.

For the relationship with the host operating system,
we have seen that a paravirtualisation VMM can run
directly on the system (like Xen) or as an
unprivileged application inside a host operating
system (like User Mode Linux).

With paravirtualisation, each guest operating system
has to be ported specifically. This takes some effort
and can only be done if the source code is available.
A closed-source operating system can only be used
if it's owner ports it. Hence portability is rather bad
for paravirtualisation.

Previrtualisation
LeVasseur et al. [11] suggest a modified version of
paravirtualisation, which they call previrtualisation.
In this case sensitive instructions are replaced by the
compiler, drastically reducing the effort needed to
perform the port. This can only be done if the

hypercall interface is sufficiently similar to the
interface sensitive instructions provide to the CPU,

We are not aware of current real-world usage of
previrtualisation. The University of Karlsruhe is
currently developing experimental VMMs which
apply previrtualisation. Marzipan runs without an
operating system and is based on the L4Ka Pistachio
microkernel developed at the same university. It is
used for research. BurnNT runs as an application on
Windows XP. This program is currently in an early
stage of development, being able to start the Linux
kernel, but not supporting user applications running
on it yet.

Previrtualisation is very similar to paravirtualisation,
but some differences in characteristics can be
expected.

The restriction that the hypercall interface be similar
to the interface provided by the CPU may result in
lower performance than paravirtualisation, where for
example multiple actions may be merged in a single
hypercall. Performance can therefore be expected to
be slightly worse than for paravirtualisation.
Because code is not translated at runtime, a
significant performance benefit over binary
translation can still be expected.

Portability is significantly better than for
paravirtualisation, since it should be possible to port
open source guest operating systems with little
effort. Closed-source operating systems still require
that owner of the operating system cooperate with
the porting effort.

Operating system level partitioning
We will discuss operating system level partitioning
only briefly, as it is not really a virtualisation
technique as defined by Popek and Goldberg. It is
still an interesting technique because it is much more
light-weight than the solutions discussed before.

In case of partitioning, virtualisation support is
provided by the operating system. The applications
running on the operating system are partitioned in
several isolated groups. The implementation for
system calls make sure that these groups cannot
interact in ways different than interaction between
separate machines. This means that they do not share
the same filesystem and that one who has root access
to a single partition may not have this privilege for
other partitions or the machine itself. Kamp and
Watson [8] describe partitioning as implemented by

7

Virtual machines – the state of the art – 30 July 2006

FreeBSD, where the feature is called “jails”.

Solaris 10 implements this feature and names it
“Zones”. Partitioning on Solaris is highly
configurable, allowing partitions to share some read-
only directories to avoid duplication of data.
OpenVZ and Linux V-Server are patches for the
Linux kernel which allow one to use partitioning on
Linux.

Performance for partitioning is very good. Both
applications and the kernel are executed natively and
hypercalls are not needed. The approach is very
lightweight because there is no need (and indeed, no
possibility) to run multiple operating systems.
Overhead is limited to some extra security checks in
the implementations for system calls.

The approach is as robust as the kernel itself, since
no separate VMM is used.

The relationship with the operating system is
inherently that the VMM is part of the kernel.

Portability of the partitioning solution is bad, since
different partitions are all running the same
operating system as the host.

Application virtual machine
Yet another virtualisation approach which is
interesting despite not satisfying the Popek and
Goldberg definition is the use of application virtual
machines.

An application virtual machine does not duplicate a
real machine, but instead exposes an instruction set
architecture especially designed for virtualisation.
Such an instruction set is designed for running
applications, not operating systems. A simple VMM
is in between the guest application and the host
operating system. This VMM typically compiles the
guest instructions and the caches the result. This is
similar to dynamic binary translation, but in this case
the job is simplified by a good choice of virtual
instruction set architecture. This allows compiling
larger chunks of code at once and is typically called
“just in time compilation” in this context.

Gough [5] discusses application virtual machines
and describes and compares two important
examples: the Java Virtual Machine and Microsoft
.NET. Both use an instruction set which is stack
based and inherently object oriented. The main
difference between the two is that Java is more
oriented towards emulation, while .NET was
designed with just in time compilation in mind. In

practice both use just in time compilation on
common operating systems running on IA-32. On
other platforms only emulation may be available.

Because for application virtual machines the
instruction set architecture is designed with
virtualisation in mind, one can expect performance
which is better than dynamic translation.

An application virtual machine can be very robust.
The instruction set architecture is normally designed
with security in mind. We also have the same kind
of double security that we had in case of dynamic
binary translation: we know that all code passes
through a translator, so no code goes through
unchecked.

Application virtual machines do not typically offer
the level of isolation that normal virtual machines
do. Still the VMM is in complete control of all
interaction between the application and the operating
system and it can selectively block or alter
interaction with the system, if so configured by the
user. This may be even more useful than total
isolation in some situations.

The relationship with the operating system is
inherently that of an unprivileged application.

An application virtual machine can only run guests
using the specially defined instruction set. This
means that portability is very bad.

It deserves mention that application virtual machines
such as Java have very good host portability. One
can execute an application on different operating
systems and architectures without recompilation as
long as one has the proper version of the VMM.
Note, however, that for our comparison we are only
looking at the ease of supporting different guest
platforms, not supporting different host platforms.

Hardware supported
Recently Intel has introduced instruction set
extensions which allow hardware supported virtual
machines. This new technology is called Virtual
Machine Extensions (VMX). An overview of this
technology is presented by Uhlig et al [17] and
complete documentation can be found in [7].

Intel introduces a distinction between VMX root and
non-root modes. When the CPU runs in root mode, it
can set up an environment for the non-root mode and
switch. When it runs in non-root mode, sensitive
instructions which do not trap and interrupts will
cause a VM exit. This saves the complete CPU state

8

Virtual machines – the state of the art – 30 July 2006

and restores the root mode
situation. It is possible for the root
to prevent certain instructions
from causing a VM exit for
performance reasons.

Both modes are just like the
original situation, including four
security rings. In effect the new
chips therefore have 8 different
security rings. This allows a guest
operating system running in non-
root mode to use ring 0, while the
VMM stays in control. Therefore
these operating systems can run
entirely without modification.
Figure 4 shows this approach.

Now we can consider ring 0 of the
VMX root mode to be supervisor
mode, the VMX non-root mode to
be user mode, and a VM exit to be
a trap. We see that the VMX extensions eliminate
exactly the problem that made IA-32 not satisfy the
conditions for the Popek and Goldberg theorem.
Ring 1 through 3 of the VMX root mode still do not
satisfy these conditions, but they now can be
avoided in the VMM.

AMD has announced that it will introduce similar
technology called Secure Virtual Machine
Architecture. This extension is documented in [1].
To our knowledge no processors with this
instruction set have been released yet.

The performance of hardware supported
virtualisation depends heavily on the implementation
of the chip. It is likely that performance is better
than for binary translation, but for paravirtualisation
it is hard to tell. This depends on which is more
expensive: a hypercall or a VM exit. The state data
which needs to be updated on a VM exit is stored in
a 4096-byte block of data, so more memory needs to
be updated than for a hypercall. It is not unthinkable,
however, that the implementation highly optimises
this specific case.

A VMM which uses the hardware solution is likely
to be very simple, and as such likely to be robust.
Security would only be compromised if a bug causes
guest code to execute in root mode. Such a severe
bug should be relatively unlikely in a simple, well-
tested VMM. As such, we consider hardware
virtualisation to be very robust.

VMX instructions trap outside of ring 0. This means

that kernel-mode support is
needed to be able to use them.

Portability between guest
operating systems is very good.
Like for dynamic binary
translation, it does not really
matter what code executes on the
Virtual Machine. Unlike binary
translation, porting in such a way
that guests can run on a different
architecture is not possible.

6 Results
We have evaluated several
techniques which are used to
implement current VMM
software. We can now link these
techniques to the applications for
which they are most suitable.

Table 1 (next page) links possible applications to the
criteria we used to evaluate the different techniques.
This table summarises chapter 4. Table 2 links
techniques to criteria, summarising chapter 5.

Servers
For servers four of the six techniques we considered
are likely to be useful.

When the virtual servers only need a single
operating system, and this operating system supports
partitioning, this is likely to be the most suitable
solution because of it's speed. In this case
virtualisation comes for free, performance-wise.

Paravirtualisation or previrtualisation can be very
useful for operating systems that do not support
partitioning. It is also useful if one wants to run
multiple guest operating systems. The speed
provided is still very good. We currently do not
know any real-world IA-32 implementations of
previrtualisation. When these are available,
benchmarks would be needed to determine if
paravirtualisation really does provide a speed
advantage over previrtualisation. If it does not,
previrtualisation is preferred since it allows easier
porting for new versions of operating systems.

In some cases the previously described solutions
cannot be applied. One example is if one needs to
run a virtual Windows server. This operating system
does not support partitioning and a paravirtualised or

9

Figure 4: Hardware supported

Set CPU
to non-root mode

Execute code
directly

Handle
cause of VM exit

VM exit

Virtual machines – the state of the art – 30 July 2006

previrtualised version is not publicly available. In
this case hardware supported virtualisation is likely
to be the best choice.

If hardware supported virtualisation is turns out to
be sufficiently fast, then it might be the best solution
in many cases. This is because the robustness is
likely to be higher than for the other cases.

Software development
For debugging, binary translation and hardware
supported virtualisation are preferred because of
their portability.

If the host operating system makes hardware
virtualisation available to applications, then
hardware supported virtualisation would probably be
the best choice. It is likely to be faster than binary
translation. If it is not available, binary translation is
preferred, because it can be used from unprivileged
applications.

Untrusted applications
When using untrusted applications, each of the
technologies we mentioned can be used. Ease of use
is probably the most important consideration here.
For partitioning or hardware support this makes it
desirable that the functionality is part of the kernel
by default, rather than having to recompile the
kernel or ask a root user to install kernel-mode
drivers.

For one distributing applications that people may not
trust, application virtual machines can be a good

choice. They allow people to run these applications
without fearing they will corrupt their system. This
requires users to have the runtime for the application
virtual machine installed. This is typically more
likely than people having complete VMMs installed.
Application virtual machines are typically easier to
use than full system virtual machines, since to the
user they appear no different than native
applications.

Note that using application virtual machines to
protect the computer requires that the environment
be set up to sufficiently protect the computer against
the guest application.

Honeypots
For honeypots, binary translation and hardware
supported virtualisation are both good choices. Both
of these are secure and portable.

If one wishes to test guests which use multiple
architectures, then dynamic binary translation would
be more useful than hardware supported
virtualisation.

7 Conclusion
Originally the IA-32 architecture was designed
without virtualisation in mind. Currently, many
different approaches are used to circumvent this
problem. Recently native support for virtual
machines has been added to this architecture.
However, the techniques previously used are still
being actively developed. Currently even new

10

Table 1: Applications linked with criteria

Performance

Server Important Important
Important

Important
Important Important

Robustness Cooperation
with host OS Portability

No OS Preferred
Debugging Preferred Preferred Application
Untrusted applications Preferred Application Preferred
Honeypot Preferred Any

Table 2: Techniques linked with criteria

Performance Robustness Portability

Binary translation Moderate Extra Any Very good
Paravirtualisation Very good Like OS Any Bad
Previrtualisation Good Like OS Any Moderate
OS-level partitioning Very good Like OS Kernel Bad
Application VM Good Extra Application Bad
Hardware supported Depends Extra Kernel / no OS Good

Cooperation
with host OS

Virtual machines – the state of the art – 30 July 2006

techniques, such as previrtualisation, are being
researched and look promising.

We found that the new hardware support is likely to
be very useful, but that it may not replace other
techniques completely. Each of the techniques we
discussed has advantages for specific areas of
application. Therefore, selecting the proper approach
can be hard as many factors should be considered.

8 References
[1] AMD, AMD64 Architecture Programmer’s Manual

Volume 2: System Programming, Publication 24593,
Revision 3.11, December 2005,
http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs
/24593.pdf

[2] A. Baratz. Virtual machine shootout: VMware vs.
Virtual PC, Ars Technica, August 8, 2004,
http://arstechnica.com/reviews/apps/vm.ars

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.
Harris, A. Ho, R. Neugebauery, I. Pratt and A.
Warfield. Xen and the Art of Virtualization,
Proceedings of the nineteenth ACM symposium on
Operating systems principles, ACM Press, New
York, NY, USA, 2003, pp. 164-177

[4] Fabrice Bellard. QEMU, A Fast and Portable
Dynamic Translator, Proceedings of the USENIX
2005 Annual Technical Conference, FREENIX
Track, April 2005, pp. 41-46

[5] K. J. Gough. Stacking them up: a comparison of
virtual machines, Proceedings of the 6th
Australasian conference on Computer systems
architecture, IEEE Computer Society, Washington,
DC, USA, 2001, pp. 55-61

[6] Intel Corporation. IA-32 Intel Architecture Software
Developer's Manual, Volume 3A: System
Programming Guide, Order number 253668-019,
March 2006,
ftp://download.intel.com/design/Pentium4/manuals/
25366819.pdf

[7] Intel Corporation. Intel Virtualization Technology
Specification for the IA-32 Intel Architecture,
C97063-002, April 2005,
ftp://download.intel.com/design/Pentium4/manuals/
25366819.pdf

[8] P. H. Kamp and R. N. M. Watson. Jails: Confining
the omnipotent root, Proceedings of the 2nd
International System Administration and
Networking Conference, 2000,
http://www.nluug.nl/events/sane2000/papers/kamp.p
df

[9] I. Kelly. Porting MINIX to Xen, May 8, 2006,
http://choices.cs.uiuc.edu/cache/Report.pd f

[10] N. Kiyanclar. A Survey of Virtualization Techniques
Focusing on Secure On-Demand Cluster Computing,
ACM Computing Research Repository, Technical
Report cs.OS/0511010, November 2, 2005
http://www.projects.ncassr.org/cluster-
sec/papers/kiyanclarCorr05-virtualization.pdf

[11] J. LeVasseur, V. Uhlig, M. Chapma, P. Chubb, B.
Leslie and G. Heiser. Pre-Virtualization: Slashing
the Cost of Virtualization, Technical Report
PA005520, National ICT Australia, October 2005,
http://nicta.com.au/uploads/documents/PA005520_
NICTA1.pdf

[12] S. Nanda and T. Chiueh. A Survey on Virtualization
Technologies, Technical report TR-179, Department
of Computer Science, State University of New York,
February 2005,
http://www.ecsl.cs.sunysb.edu/tr/TR179.pdf

[13] G. J. Popek and R. P. Goldberg. Formal
Requirements for Virtualizable Third Generation
Architectures, Communications of the ACM, ACM
Press, New York, NY, USA, Volume 17, Issue 7,
July 1974, pp. 412-421

[14] J. S. Robin and C. E. Irvine. Analysis of the Intel
Pentium's ability to support a secure virtual machine
monitor, Proceedings of the 9th USENIX Security
Symposium, August 2000, pp. 129-144

[15] R. Rose, Survey of System Virtualization
Techniques, March 8, 2004,
http://www.robertwrose.com/vita/rose-
virtualization.pdf

[16] J. E. Smith and R. Nair. The architecture of virtual
machines, Computer, IEEE Computer Society Press,
Los Alamitos, CA, USA, Volume 38, Issue 5, May
2005, pp. 32-38

[17] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F.
C. M. Martins, A. V. Anderson, S. M. Bennett, A.
Kagi, F. H. Leung and L. Smith. Intel Virtualization
Technology, Computer, IEEE Computer Society
Press, Los Alamitos, CA, USA, Volume 38, Issue 5,
May 2005, pp. 48-56

[18] D. Ung and C. Cifuentes. Machine-adaptable
dynamic binary translation, ACM SIGPLAN Notices
archive, ACM Press New York, NY, USA, Volume
35, Issue 7, July 2000, pp. 41-51

[19] VMWare Inc. ESX Server 2 Security White Paper,
2004,
http://www.vmware.com/pdf/esx2_security.pdf

[20] VMWare Inc. Virtualization Architectural
Considerations and other evaluation criteria, 2005,
http://www.vmware.com/pdf/virtualization_consider
ations.pdf

[21] Wikipedia contributors. Comparison of virtual
machines, Wikipedia, The Free Encyclopedia, June
24, 2006,
http://en.wikipedia.org/w/index.php?title=Comparis

11

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://en.wikipedia.org/w/index.php?title=Comparison_of_virtual_machines&oldid=60326520
http://www.vmware.com/pdf/virtualization_considerations.pdf
http://www.vmware.com/pdf/virtualization_considerations.pdf
http://www.vmware.com/pdf/esx2_security.pdf
http://www.robertwrose.com/vita/rose-virtualization.pdf
http://www.robertwrose.com/vita/rose-virtualization.pdf
http://www.ecsl.cs.sunysb.edu/tr/TR179.pdf
http://nicta.com.au/uploads/documents/PA005520_NICTA1.pdf
http://nicta.com.au/uploads/documents/PA005520_NICTA1.pdf
http://www.projects.ncassr.org/cluster-sec/papers/kiyanclarCorr05-virtualization.pdf
http://www.projects.ncassr.org/cluster-sec/papers/kiyanclarCorr05-virtualization.pdf
http://choices.cs.uiuc.edu/cache/Report.pdf
http://www.nluug.nl/events/sane2000/papers/kamp.pdf
http://www.nluug.nl/events/sane2000/papers/kamp.pdf
http://www.intel.com/design/pentium4/manuals/index_new.htm
http://www.intel.com/design/pentium4/manuals/index_new.htm
ftp://download.intel.com/design/Pentium4/manuals/25366819.pdf
ftp://download.intel.com/design/Pentium4/manuals/25366819.pdf
http://arstechnica.com/reviews/apps/vm.ars

Virtual machines – the state of the art – 30 July 2006

on_of_virtual_machines&oldid=60326520

9 Products mentioned
Bochs http://bochs.sourceforge.net/
BurnNT http://l4ka.org/projects/virtualizatio

n/burnnt/
FreeBSD http://www.freebsd.org/
Java http://java.sun.com/
Linux V-Server http://linux-vserver.org/
Marzipan http://l4ka.org/projects/virtualizatio

n/resourcemon/
Microsoft .NEThttp://www.microsoft.com/net/
Microsoft
VirtualPC

http://www.microsoft.com/Wind
ows/virtualpc/

Microsoft
Virtual Server

http://www.microsoft.com/windows
serversystem/virtualserver/

OpenVZ http://openvz.org/
Parallels
Workstation

http://www.parallels.com/en/pro
ducts/workstation/

Qemu http://fabrice.bellard.free.fr/qemu
/

Serenity Virtual
Station

http://www.serenityvirtual.com/

Solaris Zones http://www.opensolaris.org/os/co
mmunity/zones/

User Mode
Linux

http://user-mode-
linux.sourceforge.net/

VMWare ESX
Server

http://www.vmware.com/products/v
i/esx/

VMWare
Workstation

http://www.vmware.com/product
s/ws/

Xen http://www.xensource.com/

12

http://www.xensource.com/
http://www.vmware.com/products/ws/
http://www.vmware.com/products/ws/
http://www.vmware.com/products/vi/esx/
http://www.vmware.com/products/vi/esx/
http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/
http://www.opensolaris.org/os/community/zones/
http://www.opensolaris.org/os/community/zones/
http://www.serenityvirtual.com/
http://fabrice.bellard.free.fr/qemu/
http://fabrice.bellard.free.fr/qemu/
http://www.parallels.com/en/products/workstation/
http://www.parallels.com/en/products/workstation/
http://openvz.org/
http://www.microsoft.com/windowsserversystem/virtualserver/default.mspx
http://www.microsoft.com/windowsserversystem/virtualserver/default.mspx
http://www.microsoft.com/Windows/virtualpc/
http://www.microsoft.com/Windows/virtualpc/
http://www.microsoft.com/net/
http://l4ka.org/projects/virtualization/resourcemon/
http://l4ka.org/projects/virtualization/resourcemon/
http://linux-vserver.org/
http://java.sun.com/
http://www.freebsd.org/
http://l4ka.org/projects/virtualization/burnnt/
http://l4ka.org/projects/virtualization/burnnt/
http://bochs.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Comparison_of_virtual_machines&oldid=60326520

	1Introduction
	What is a virtual machine?
	Why are virtual machines useful?
	Servers
	Software development
	Untrusted software
	Honeypots

	2Related work
	3Theoretical background
	Popek and Goldberg
	Virtualisability of IA-32

	4How to compare
	Performance
	Robustness
	Relationship with host operating system
	Portability to multiple guests

	5Techniques in use
	Dynamic Binary Translation
	Paravirtualisation
	Previrtualisation
	Operating system level partitioning
	Application virtual machine
	Hardware supported

	6Results
	Servers
	Software development
	Untrusted applications
	Honeypots

	7Conclusion
	8References
	9Products mentioned

