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Abstract
Virtual machine monitors partition a single physical 
machine  into  multiple  virtual  ones.  This  can  be 
useful  for  several  important  applications,  such  as 
running  multiple  isolated  servers  on  a  single 
machine,  testing  and  debugging  software,  using 
possibly malicious software and building honeypots.

The  widely  used  IA-32  architecture  does  not 
natively support virtualisation. We compare several 
state-of-the-art  methods  used  to  circumvent  this 
problem. Our comparison includes dynamic binary 
translation,  paravirtualisation,  previrtualisation, 
operating  system  level  partitioning,  application 
virtual machines and the 
recent “Virtual Machine 
Extensions”  added  to 
IA-32  by  Intel.  Our 
criteria  for  this 
comparison  include 
performance, 
robustness,  relationship 
with  the  host  operating 
system and portability.

We use the results of the 
comparison to determine 
which  techniques  are 
most suitable for  which 
applications.  We  find 
that  the  new  hardware 
virtualisation  support 
looks very promising for 
many applications, but may not completely replace 
other methods.

1 Introduction

What is a virtual machine?
Virtualisation  is  a  technique  which  allows  one  to 
partition a computer system in multiple completely 
separate systems. Each of these provides a software 
environment  which  is  very  similar  to  that  of  a 
complete  computer. Such an environment is called a 
virtual machine (VM). 

One  will  typically  want  to  install  an  operating 
system  on  a  virtual  machine  to  be  able  to  run 
applications.  This  guest  operating  system assumes 
that it has complete control of the computer, and it 
will attempt to access it's hardware. This cannot be 

allowed,  since  the  hardware  is  shared  with  guest 
operating systems running on other virtual machines. 
A program called virtual machine monitor (VMM) 
or hypervisor is needed to make sure all resources 
are shared properly. 

The  role  of  a  VMM  dividing  resources  between 
operating  systems  differs  from  that  of  a  kernel 
dividing resources between applications.  The main 
difference  is  that  the  latter  typically  provides  an 
abstraction  of  physical  devices,  while  the  former 
does  not  change  the  abstraction  level  [16].  The 
VMM should present a faithful low-level interface to 
virtualised hardware. 

The VMM itself may have full hardware access, but 
it  can  also  can  be  a 
normal  application 
running on an operating 
system. In this  case the 
operating  system  on 
which the VMM runs is 
called the host operating 
system. This situation is 
shown in figure 1.

Why are virtual 
machines useful?
Virtual  machines  have 
many  practical  uses  in 
many different  kinds of 
environments. 

Servers

One  can  use  virtual  machines  to  run  multiple 
isolated virtual servers on a single physical server. 
This  allows  hardware  to  be  used  more  efficiently 
and  decreases  hardware  costs.  For  an  internet 
hosting  company  this  can  be  used  to  allow 
customers  full  access  to  a  virtual  server  without 
endangering  other  servers  on  the  same  physical 
machine. 

Another advantage of using virtual servers is the fact 
that they can easily be moved to other computers. 
Typically the  interface to the virtualised hardware 
does not depend on the actual hardware, so the guest 
operating  system  does  not  even  notice  the  move. 
This  can  be  used  to  minimise  downtime  after 
restoring a backup to different hardware.

Software development

Virtual  machines  have  their  uses  in  software 
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development as well. They provide a way to switch 
between  different  (versions  of)  operating  systems 
easily and quickly. This is very useful for testing and 
debugging software on multiple platforms.

VMMs may also allow the user to make snapshots of 
virtual machines. This means one can test something 
and  revert  the  machine  to  it's  original  state 
afterwards. This is again very useful for testing and 
debugging.

Yet another application for development is to debug 
low-level software, such as kernels. A VMM could 
provide a  kernel  debugger  with  much information 
about what is going on. It also makes recovery from 
crashes easier, since one can simply use a previous 
snapshot.

Untrusted software

Another  application  which  is  especially  useful 
nowadays is the ability to run untrusted software in 
an  environment  where  it  can  do  no  damage. 
Examples  are  running  potential  malware 
downloaded  from  the  Internet  and  opening 
suspicious e-mail attachments. If the VMM is secure 
enough, there is no way for malware and viruses to 
infect  the  physical  machine  or  other  virtual 
machines.

Honeypots

Finally  virtual  machines  provide  an  easy  way  to 
build  secure  “honeypots”.  These  are  unprotected 
machines which are connected to the Internet. The 
purpose is to get information about new methods to 
exploit flaws in operating systems and applications. 
By using virtual honeypots,  these exploits are less 
likely to do damage to the system inself. This may 
make investigation and recovery easier.  They also 
allow  having  multiple  honeypots  with  different 
(versions  of)  operating  systems  running 
simultaneously.

2 Related work 
There  are  several  papers  comparing  different 
virtualisation  techniques.  Kiyanclar  [10]  compares 
several  virtualisation  programs  to  select  the  one 
which is most suitable for secure on-demand cluster 
computing.  His  criteria  are  similar  to  ours.  Nanda 
and  Chiueh  [12]  discuss  some  implementation 
details  for  a  large  number  of  VMMs.  Both  focus 
more  on  specific  implementations  than  on 
characteristics  inherent  to  techniques.  Rose  [15] 

discusses  advantages  and  disadvantages  of  full 
system virtualisation and paravirtualisation. 

In-depth  articles  comparing  virtual  machines  are 
typically limited to a single technique. An example 
is  Gaugh  [5],  who  compares  the  Java  Virtual 
Machine  and  .NET,  which  are  both  application 
virtual  machines.  Ars  Technica  [2]  compares  two 
major  dynamic  binary  translation  VMMs,  but 
considers only performance and ease of use.

A large comparison table of virtualisation software 
is  found on Wikipedia  [21].  This  table provides a 
simple  overview  over  the  basic  characteristics  of 
many  virtualisation  programs.  The  comparison 
focusses more on software than on techniques and 
more on features than on applications. Note that, at 
the moment of writing, this article is considered to 
be in need of expert attention and clean-up.

3 Theoretical background

Popek and Goldberg
Popek  and  Goldberg  [13]  investigated  sufficient 
conditions  which allow a  computer  architecture  to 
support  virtual  machines.  They  defined  a  virtual 
machine as  “an efficient,  isolated  duplicate  of  the 
real  machine”.  Although  their  research  was 
motivated by the question why IBM 360/67 could 
support virtual machines while DEC PDP-10 could 
not,  their  criterion  still  applies  to  modern 
architectures.

Central  to  Popek  and  Goldberg's  theorem  is  the 
distinction between supervisor and user modes. The 
supervisor  mode  allows  complete  access  to  the 
machine and is typically used by operating system 
kernels  and  VMMs,  while  the  user  mode is  more 
limited and is typically used by applications. They 
further  define  a  trap  operation,  which  places  the 
processor in a stored state (typically the supervisor 
mode) while saving the current state. 

Popek and Goldberg consider some properties that 
individual instructions can have:

● A  privileged  instruction  performs  a  trap 
operation in user mode, but does not trap in 
supervisor mode;

● A control sensitive  instruction can change 
the  operating  mode  or  virtual  memory 
mappings;

● A behaviour sensitive instruction executes in 
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different ways depending on operating mode 
or virtual memory mappings;

● A sensitive  instruction  is  control  sensitive 
and/or behaviour sensitive.

Having  defined  these  terms,  we  can  state  the 
theorem:  “A  virtual  machine  monitor  may  be 
constructed if the set of sensitive instructions for the 
computer  is  a  subset  of  the  set  of  privileged 
instructions”. The virtual machine is constructed by 
letting the VMM operate in supervisor mode and the 
virtual machine in user mode. This way the monitor 
can emulate sensitive instructions, since it is notified 
by a trap operation. Non-sensitive instructions can 
safely be executed directly.

Virtualisability of IA-32
The  IA-32  architecture  is  very  widely  used  in 
personal computers and servers which run Windows, 
Linux or, more recently, Mac OS. It evolved from 
(and  is  still  compatible  with)  the  instruction  set 
architectures  used  by  the  8086 and  it's  successors 
and is therefore also commonly known as x86. The 
Pentium  D  and  Core  Duo  chips  from  Intel  and 
Opteron and Athlon 64 X2 from AMD are examples 
of modern implementations of IA-32.

IA-32  defines  four  security  rings  numbered  0 
through 3. Ring 0 can be considered the supervisor 
mode, while the other rings correspond with the user 
mode.  The  architecture  defines  privileged 
instructions  which,  when  executed  in  user  mode, 
trap by calling an interrupt handler in ring 0. Virtual 
memory is implemented through segmentation and 
paging. Segments are identified by 16-bit  segment 
selectors  which  contain  the  number  of  the  least 
privileged  ring  allowed  to  access  them.  The 
operating system's perspective of IA-32 is described 
at length in [7].

Robin and Irvine [14] have investigated the IA-32 
architecture and have found many instructions that 
are sensitive, but not privileged. An example is the 
“PUSH CS” instruction, which pushes onto the stack 
the selector for the segment containing the currently 
executing code. Since this segment selector contains 
the  number  of  the  current  security  ring,  this 
instruction is behaviour sensitive.

The lack of native virtual machine support has lead 
to the use of many different techniques on the IA-32 
platform. The approaches we mention are applicable 
to other architectures, but we will  focus on IA-32. 

We  will  also  discuss  two  approaches  which  are 
highly similar  to virtual  machines and provide the 
same advantages, but which are not virtual machines 
according to the definition we presented before.

Recently Intel has added true virtualisation support 
to  their  newest  IA-32  chips  by  including  an 
extension  instruction  set  called  “Virtual  Machine 
Extensions”.  We  will  discuss  this  technology  as 
well.

4 How to compare
Before  one  can  meaningfully  compare  virtual 
machine  techniques,  one  has  to  determine  which 
criteria to use to distinguish the methods. We will 
use several characteristics to do this, each of which 
may or may not be relevant depending on the reason 
we use virtual machines.  

Performance
One  important  criterion  is  performance.  Good 
performance is desirable for each of the applications 
we mentioned, and essential for some of them. 

From the applications we discussed, performance is 
most important in case virtual machines are used for 
isolated server consolidation. The more efficient the 
VMM is, the more virtual servers can be run on a 
single  physical  server.  This  means  that  solutions 
which perform better require fewer servers.

When used for debugging, a VMM which performs 
well  is  pleasant,  but  not  essential.  The same goes 
when  virtual  machines  are  applied  to  isolate 
untrusted programs or to secure honeypots. 

Note that we will focus on techniques rather than on 
their  implementations.  As  such,  our  aim is  not  to 
compare benchmark results. Instead we will look at 
the performance potentials inherent to the methods 
we evaluate.

Robustness
Virtual machines should provide absolute isolation 
and, as such, perfect security. The only means for 
communication between virtual machines should be 
the  virtual  network  connection.  Unfortunately, 
perfection is hard to come by. Both the VMM and 
the host kernel are pieces of software and, as such, 
we  can  expect  them  to  contain  bugs.  We  will 
therefore evaluate the robustness of the security in 
the presence of bugs. We will find that in some cases 
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the VMM can increase robustness,  while in others 
the isolation entirely depends on the ability of the 
kernel to isolate applications.

Secure  isolation  is  the  core  feature  when  virtual 
machines are applied to isolate untrusted programs 
or  to  secure  honeypots.  It  is  also  of  utmost 
importance  when   used  for  server  consolidation, 
since a breach of security would mean down-time. In 
each  of  these  cases  we  can  expect  malicious 
attempts to break security. 

For  debugging  purposes  we  rely  less  on  the 
robustness  of  VMMs.  Although  crashes  of  the 
virtual  machine are possible and should not  effect 
the physical machine, we do not expect any malice.

Relationship with host operating system
A VMM can have different  kinds of  relationships 
with  the  host  operating  system.  It  may  be  an 
unprivileged application, but it may also be require 
cooperation  from  inside  the  kernel.  A  third 
possibility  is  that  no  host  operating  system  is 
present. In this case one could say the VMM itself 
acts as a minimal operating system.

When used for debugging purposes, it  is desirable 
that  the  VMM  can  run  as  an 
application. This avoids restarting 
and  allows  one  to  run  other 
applications  besides  the  VMM 
while  debugging.  It  is  preferable 
that  kernel  cooperation  is  not 
required,  because  one  would 
typically want  to avoid installing 
kernel-mode  drivers  since  these 
may  make  the  operating  system 
less  stable.  Another  problem  is 
that  installing  such  a  driver  is 
normally only allowed for the root 
user.  The  same  reasoning  goes 
when  virtual  machines  are  used 
for running untrusted applications. 
Note that need for kernel support 
is not a problem if the feature is 
integrated in the kernel by default.

For servers it is preferred that the 
VMM  run  directly  on  the 
machine, without a host operating 
system  present.  This  reduces 
overhead and may be more stable. 
It  does  require  that  the  server 
hardware  is  supported  by  the 

VMM.

For  honeypots  the  relationship  with  the  operating 
system is not very important.  

Portability to multiple guests
Being able to support many different guest operating 
systems without additional effort is important when 
virtual  machines  are  used  for  debugging 
applications. A developer typically wants to test not 
only  on  multiple  operating  systems,  but  also  on 
different versions of the same operating system. The 
same  goes  for  honeypots,  since  different  versions 
may have different vulnerabilities.

When  virtual  machines  are  used  for  server 
consolidation or running untrusted applications, it is 
sufficient  that  one  recent  version  of  each  needed 
operating system is supported. 

5 Techniques in use

Dynamic Binary Translation
Dynamic  binary  translation  can  be  seen  as  an 
advanced  way  to  do  emulation.  In  case  of  pure 

emulation,  the  host  software 
implements  the  instructions  that 
are  available  on  the  CPU.  This 
allows  it  to  interpret  the 
instructions supplied by the guest. 
As  such,  emulation  is  the  most 
obvious approach to build virtual 
machines  on  hardware  platforms 
that  have  no  native  support  for 
them.  Bochs  is  an  example  of  a 
program  which  emulates  IA-32 
CPUs. 

Unfortunately  pure  emulation 
provides  very  poor  performance, 
since  executing  a  single  guest 
instruction  typically  takes  many 
instructions on the host machine. 
This lack of efficiency means that 
an  emulated  machine  does  not 
satisfy  the  Popek  and  Goldberg 
definition  for  a  virtual  machine. 
As  such,  we  will  not  consider 
emulation separately.

Dynamic  binary  translation 
overcomes  the  performance 
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limitations  of  emulation  by  translating  the 
instruction stream to host instructions which can be 
executed natively. In this step sensitive instructions 
are replaced with calls to the VMM. The translated 
instruction stream can be cached.  Because of  this, 
only a small part of the time is spent on translation. 
The  main  loop  of  a  dynamic  binary  translation 
VMM is shown in figure 2.

Ung and Cifuentes [18] provide details on how one 
can implement binary translation.

Translation can be more efficient if the host has the 
same  architecture  as  the  guest,  and  many  of  the 
available  dynamic  binary  translation  VMMs  only 
support running IA-32 guests on IA-32 hosts. 

Dynamic binary translation is widely used.  Market 
leader  VMWare created  several  VMMs which are 
based on this technique: VMWare Workstation runs 
as  an  application  on  Windows  and  Linux  and 
VMWare  ESX  server  runs  without  an  operating 
system.  The  architecture  of  the  virtualisation 
software is described in [20]. For the server version, 
this  software  runs  on  a  proprietary  microkernel 
operating system [19].

Another  example of  a  VMM which uses dynamic 
binary translation is QEMU. This program provides 
more insight in the implementation of this technique, 
since  it  is  open  source.  It's  author  describes  the 
internals in [4]. QEMU translates CPU instructions 
to  C  code,  which  is  compiled  using  the  GCC 
compiler. This results in very good portability, since 
GCC has been ported to many platforms. Translation 
happens in blocks ending at the next potential jump 
or important change in CPU state (such as changing 
mode  of  operation).  These  blocks  are  stored  in  a 
cache. Pages containing translated code are marked 
write-only, and by handling the resulting protection 
faults  QEMU  can  invalidate  the 
cache when code changes.

Other  examples  of  virtualisation 
products  which  use  dynamic 
binary  translation  include 
Microsoft  VirtualPC  and 
VirtualServer,  Parallels 
Workstation and Serenity  Virtual 
Station.

With  dynamic  binary  translation 
much  of  the  code  is  translated 
only  once  and  can  be  executed 
natively. We therefore expect the 
chaining  of  translated  blocks  to 

have  the  most  important  impact  on  performance. 
Benchmarks show [2] that a highly optimised binary 
translation VMM such as VMWare Workstation can 
reach  good  speeds,  but  worse  results  should  be 
expected in branch-intensive or self-modifying code.

The host kernel should ensure that the guest code is 
executed in a user mode ring, typically ring 3. All of 
this code is generated by the VMM. This provides 
the  additional  guarantee  that  the  guest  cannot 
attempt to call the host kernel directly. This results 
in double protection, making it unlikely that a single 
bug in either the kernel or the VMM compromises 
the  isolation.  As  such,  dynamic  binary  translation 
can be very robust. 

Our examples show that  binary translation VMMs 
can  be  highly  portable.  In  principle,  the  guest 
operating system does not matter at all, as long as 
the  VMM  faithfully  implements  all  hardware 
interfaces it requires.

A  binary  translation  VMM  can  run  either  as  an 
unprivileged application within an operating system 
or  with full  control  without  operating system. We 
have seen examples of both. 

Paravirtualisation
The approach we described before tries to mimic the 
environment  in  which  the  operating  system  is 
running on a real machine. For this reason it is also 
called  full  system  virtualisation.  More  efficient 
virtualisation  may  be  possible  if  the  VMM 
cooperates  with  the  guest  operating  system.  This 
approach is called paravirtualisation.

Xen  is  an  example  of  a  virtual  machine  monitor 
which uses paravirtualisation. It requires that guest 
operating systems be changed to make their kernel 

run in ring 1 instead of ring 0. The 
ported kernel uses “hypercalls” to 
replace sensitive instructions. This 
is done by placing parameters in 
registers  and  then  calling  an 
interrupt  handler.  Xen itself  runs 
in ring 0. The approach is shown 
in figure 3.

Xen's  creators  ported  Windows 
XP, Linux and BSD to run on Xen 
[3],  although  Windows  is  not 
publicly available. Minix for Xen 
is  also  available,  and  the 
document  [9]  describing  the 
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porting process  shows how a  simple  microkernel 
operating system can be ported to Xen. 

Another example of paravirtualisation is User Mode 
Linux.  This  is  a  modified  version  of  the  Linux 
kernel which is capable of running as a user-mode 
application inside Linux. 

Paravirtualisation can be expected to  be  very fast, 
since  all  code  can  be  executed  without  runtime 
translation.  The  only  overhead  is  having  to  use 
hypercalls  instead  of  accessing  hardware  directly. 
This may affect the performance slightly, but this is 
unavoidable  since  direct  hardware  access  is 
unacceptable in a virtual machine.

With paravirtualisation, code is not translated. This 
means that we must be careful not to allow it any 
access to the physical machine. Since all of this code 
runs  in  user  mode,  the  only  way  out  should  be 
calling the  host  kernel  (at  least,  if  the host  kernel 
properly  sets  up  permissions).  This  should  be 
prevented, as it might allow virtual machines more 
access than they are entitled to. 

If direct access to the host kernel is prevented, then 
the security of a paravirtualising VMM relies on the 
ability  of  the  host  operating  system  to  securely 
isolate applications. If  no host operating system is 
installed, such protection should be provided by the 
kernel  included  in  the  VMM.  In  both  cases  the 
robustness can be expected to be at the same level as 
the protection between applications delivered by the 
host  operating  system.  Paravirtualisation  lacks  the 
double security provided by binary translation.

For the relationship with the host operating system, 
we have seen that a paravirtualisation VMM can run 
directly  on  the  system  (like  Xen)  or  as  an 
unprivileged  application  inside  a  host  operating 
system (like User Mode Linux).

With paravirtualisation, each guest operating system 
has to be ported specifically. This takes some effort 
and can only be done if the source code is available. 
A closed-source operating system can only be used 
if it's owner ports it. Hence portability is rather bad 
for paravirtualisation.

Previrtualisation
LeVasseur et al. [11] suggest a modified version of 
paravirtualisation, which they call previrtualisation. 
In this case sensitive instructions are replaced by the 
compiler,  drastically  reducing the  effort  needed to 
perform  the  port.  This  can  only  be  done  if  the 

hypercall  interface  is  sufficiently  similar  to  the 
interface sensitive instructions provide to the CPU,

We are  not  aware  of  current  real-world  usage  of 
previrtualisation.  The  University  of  Karlsruhe  is 
currently  developing  experimental  VMMs  which 
apply  previrtualisation.  Marzipan  runs  without  an 
operating system and is based on the L4Ka Pistachio 
microkernel developed at the same university. It is 
used for research. BurnNT runs as an application on 
Windows XP. This program is currently in an early 
stage of development, being able to start the Linux 
kernel, but not supporting user applications running 
on it yet.

Previrtualisation is very similar to paravirtualisation, 
but  some  differences  in  characteristics  can  be 
expected. 

The restriction that the hypercall interface be similar 
to the interface provided by the CPU may result in 
lower performance than paravirtualisation, where for 
example multiple actions may be merged in a single 
hypercall. Performance can therefore be expected to 
be  slightly  worse  than  for  paravirtualisation. 
Because  code  is  not  translated  at  runtime,  a 
significant  performance  benefit  over  binary 
translation can still be expected.

Portability  is  significantly  better  than  for 
paravirtualisation, since it should be possible to port 
open  source  guest  operating  systems  with  little 
effort. Closed-source operating systems still require 
that owner of the operating system cooperate with 
the porting effort.

Operating system level partitioning
We will discuss operating system level partitioning 
only  briefly,  as  it  is  not  really  a  virtualisation 
technique as defined by Popek and Goldberg. It is 
still an interesting technique because it is much more 
light-weight than the solutions discussed before.

In  case  of  partitioning,  virtualisation  support  is 
provided by the operating system. The applications 
running on the operating system are partitioned in 
several  isolated  groups.  The  implementation  for 
system  calls  make  sure  that  these  groups  cannot 
interact  in ways different  than interaction between 
separate machines. This means that they do not share 
the same filesystem and that one who has root access 
to a single partition may not have this privilege for 
other  partitions  or  the  machine  itself.  Kamp  and 
Watson [8] describe partitioning as implemented by 
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FreeBSD, where the feature is called “jails”. 

Solaris  10  implements  this  feature  and  names  it 
“Zones”.  Partitioning  on  Solaris  is  highly 
configurable, allowing partitions to share some read-
only  directories  to  avoid  duplication  of  data. 
OpenVZ  and  Linux  V-Server  are  patches  for  the 
Linux kernel which allow one to use partitioning on 
Linux. 

Performance  for  partitioning  is  very  good.  Both 
applications and the kernel are executed natively and 
hypercalls  are  not  needed.  The  approach  is  very 
lightweight because there is no need (and indeed, no 
possibility)  to  run  multiple  operating  systems. 
Overhead is limited to some extra security checks in 
the implementations for system calls.

The approach is as robust as the kernel itself, since 
no separate VMM is used.  

The  relationship  with  the  operating  system  is 
inherently that the VMM is part of the kernel.

Portability of the partitioning solution is bad, since 
different  partitions  are  all  running  the  same 
operating system as the host.

Application virtual machine
Yet  another  virtualisation  approach  which  is 
interesting  despite  not  satisfying  the  Popek  and 
Goldberg definition is the use of application virtual 
machines. 

An application virtual machine does not duplicate a 
real machine, but instead exposes an instruction set 
architecture  especially  designed  for  virtualisation. 
Such  an  instruction  set  is  designed  for  running 
applications, not operating systems. A simple VMM 
is  in  between  the  guest  application  and  the  host 
operating system. This VMM typically compiles the 
guest instructions and the caches the result. This is 
similar to dynamic binary translation, but in this case 
the  job  is  simplified  by  a  good  choice  of  virtual 
instruction  set  architecture.  This  allows  compiling 
larger chunks of code at once and is typically called 
“just in time compilation” in this context.

Gough  [5]  discusses  application  virtual  machines 
and  describes  and  compares  two  important 
examples: the Java Virtual Machine and Microsoft 
.NET.  Both  use  an  instruction  set  which  is  stack 
based  and  inherently  object  oriented.  The  main 
difference  between  the  two  is  that  Java  is  more 
oriented  towards  emulation,  while  .NET  was 
designed with just in time compilation in mind. In 

practice  both  use  just  in  time  compilation  on 
common operating  systems  running  on  IA-32.  On 
other platforms only emulation may be available.

Because  for  application  virtual  machines  the 
instruction  set  architecture  is  designed  with 
virtualisation in mind, one can expect performance 
which is better than dynamic translation. 

An application virtual machine can be very robust. 
The instruction set architecture is normally designed 
with security in mind. We also have the same kind 
of double security that we had in case of dynamic 
binary  translation:  we  know  that  all  code  passes 
through  a  translator,  so  no  code  goes  through 
unchecked. 

Application virtual machines do not typically offer 
the level  of  isolation that  normal virtual  machines 
do.  Still  the  VMM  is  in  complete  control  of  all 
interaction between the application and the operating 
system  and  it  can  selectively  block  or  alter 
interaction with the system, if so configured by the 
user.  This  may  be  even  more  useful  than  total 
isolation in some situations.

The  relationship  with  the  operating  system  is 
inherently that of an unprivileged application.

An application virtual machine can only run guests 
using  the  specially  defined  instruction  set.  This 
means that portability is very bad. 

It deserves mention that application virtual machines 
such as Java have very good host portability.  One 
can  execute  an  application  on  different  operating 
systems and architectures without recompilation as 
long  as  one  has  the  proper  version  of  the  VMM. 
Note, however, that for our comparison we are only 
looking  at  the  ease  of  supporting  different  guest 
platforms, not supporting different host platforms.

Hardware supported
Recently  Intel  has  introduced  instruction  set 
extensions which allow hardware supported virtual 
machines.  This  new  technology  is  called  Virtual 
Machine  Extensions  (VMX).  An  overview of  this 
technology  is  presented  by  Uhlig  et  al  [17]   and 
complete documentation can be found in [7]. 

Intel introduces a distinction between VMX root and 
non-root modes. When the CPU runs in root mode, it 
can set up an environment for the non-root mode and 
switch.  When  it  runs  in  non-root  mode,  sensitive 
instructions  which  do  not  trap  and  interrupts  will 
cause a VM exit. This saves the complete CPU state 
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and  restores  the  root  mode 
situation. It is possible for the root 
to  prevent  certain  instructions 
from  causing  a  VM  exit  for 
performance reasons.

Both  modes  are  just  like  the 
original  situation,  including  four 
security  rings.  In  effect  the  new 
chips  therefore  have  8  different 
security rings. This allows a guest 
operating system running in non-
root mode to use ring 0, while the 
VMM stays in control. Therefore 
these  operating  systems  can  run 
entirely  without  modification. 
Figure 4 shows this approach.

Now we can consider ring 0 of the 
VMX root mode to be supervisor 
mode, the VMX non-root mode to 
be user mode, and a VM exit to be 
a trap. We see that the VMX extensions eliminate 
exactly the problem that made IA-32 not satisfy the 
conditions  for  the  Popek  and  Goldberg  theorem. 
Ring 1 through 3 of the VMX root mode still do not 
satisfy  these  conditions,  but  they  now  can  be 
avoided in the VMM. 

AMD has  announced that  it  will  introduce similar 
technology  called  Secure  Virtual  Machine 
Architecture.  This extension is  documented in  [1]. 
To  our  knowledge  no  processors  with  this 
instruction set have been released yet.

The  performance  of  hardware  supported 
virtualisation depends heavily on the implementation 
of  the  chip.  It  is  likely that  performance is  better 
than for binary translation, but for paravirtualisation 
it  is  hard  to  tell.  This  depends  on  which  is  more 
expensive: a hypercall or a VM exit. The state data 
which needs to be updated on a VM exit is stored in 
a 4096-byte block of data, so more memory needs to 
be updated than for a hypercall. It is not unthinkable, 
however,  that  the implementation highly optimises 
this specific case.

A VMM which uses the hardware solution is likely 
to be very simple, and as such likely to be robust. 
Security would only be compromised if a bug causes 
guest code to execute in root mode. Such a severe 
bug should be relatively unlikely in a simple, well-
tested  VMM.  As  such,  we  consider  hardware 
virtualisation to be very robust.

VMX instructions trap outside of ring 0. This means 

that  kernel-mode  support  is 
needed to be able to use them. 

Portability  between  guest 
operating  systems  is  very  good. 
Like  for  dynamic  binary 
translation,  it  does  not  really 
matter what code executes on the 
Virtual  Machine.  Unlike  binary 
translation, porting in such a way 
that guests can run on a different 
architecture is not possible.

6 Results
We  have  evaluated  several 
techniques  which  are  used  to 
implement  current  VMM 
software. We can now link these 
techniques to the applications for 
which they are most suitable.

Table 1 (next page) links possible applications to the 
criteria we used to evaluate the different techniques. 
This  table  summarises  chapter  4.  Table  2 links 
techniques to criteria, summarising chapter 5. 

Servers
For servers four of the six techniques we considered 
are likely to be useful.

When  the  virtual  servers  only  need  a  single 
operating system, and this operating system supports 
partitioning,  this  is  likely  to  be  the  most  suitable 
solution  because  of  it's  speed.  In  this  case 
virtualisation comes for free, performance-wise.

Paravirtualisation  or  previrtualisation  can  be  very 
useful  for  operating  systems  that  do  not  support 
partitioning.  It  is  also  useful  if  one  wants  to  run 
multiple  guest  operating  systems.  The  speed 
provided  is  still  very  good.  We  currently  do  not 
know  any  real-world  IA-32  implementations  of 
previrtualisation.  When  these  are  available, 
benchmarks  would  be  needed  to  determine  if 
paravirtualisation  really  does  provide  a  speed 
advantage  over  previrtualisation.  If  it  does  not, 
previrtualisation  is  preferred  since  it  allows  easier 
porting for new versions of operating systems.  

In  some  cases  the  previously  described  solutions 
cannot be applied. One example is if one needs to 
run a virtual Windows server. This operating system 
does not support partitioning and a paravirtualised or 
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previrtualised  version  is  not  publicly  available.  In 
this case hardware supported virtualisation is likely 
to be the best choice. 

If hardware supported virtualisation is turns out to 
be sufficiently fast, then it might be the best solution 
in  many  cases.  This  is  because  the  robustness  is 
likely to be higher than for the other cases.

Software development
For  debugging,  binary  translation  and  hardware 
supported  virtualisation  are  preferred  because  of 
their portability. 

If  the  host  operating  system  makes  hardware 
virtualisation  available  to  applications,  then 
hardware supported virtualisation would probably be 
the best choice. It is likely to be faster than binary 
translation. If it is not available, binary translation is 
preferred, because it can be used from unprivileged 
applications.

Untrusted applications
When  using  untrusted  applications,  each  of  the 
technologies we mentioned can be used. Ease of use 
is  probably the most important  consideration here. 
For  partitioning or hardware support  this  makes it 
desirable that the functionality is part of the kernel 
by  default,  rather  than  having  to  recompile  the 
kernel  or  ask  a  root  user  to  install  kernel-mode 
drivers.

For one distributing applications that people may not 
trust,  application  virtual  machines  can  be  a  good 

choice. They allow people to run these applications 
without fearing they will corrupt their system. This 
requires users to have the runtime for the application 
virtual  machine  installed.  This  is  typically  more 
likely than people having complete VMMs installed. 
Application virtual machines are typically easier to 
use than full  system virtual machines, since to the 
user  they  appear  no  different  than  native 
applications.

Note  that  using  application  virtual  machines  to 
protect the computer requires that the environment 
be set up to sufficiently protect the computer against 
the guest application. 

Honeypots
For  honeypots,  binary  translation  and  hardware 
supported virtualisation are both good choices. Both 
of these are secure and portable. 

If  one  wishes  to  test  guests  which  use  multiple 
architectures, then dynamic binary translation would 
be  more  useful  than  hardware  supported 
virtualisation.

7 Conclusion
Originally  the  IA-32  architecture  was  designed 
without  virtualisation  in  mind.  Currently,  many 
different  approaches  are  used  to  circumvent  this 
problem.  Recently  native  support  for  virtual 
machines  has  been  added  to  this  architecture. 
However,  the  techniques  previously  used  are  still 
being  actively  developed.  Currently  even  new 
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Table 1: Applications linked with criteria

Performance

Server Important Important
Important

Important
Important Important

Robustness Cooperation 
with host OS Portability

No OS Preferred
Debugging Preferred Preferred Application
Untrusted applications Preferred Application Preferred
Honeypot Preferred Any

Table 2: Techniques linked with criteria

Performance Robustness Portability

Binary translation Moderate Extra Any Very good
Paravirtualisation Very good Like OS Any Bad
Previrtualisation Good Like OS Any Moderate
OS-level partitioning Very good Like OS Kernel Bad
Application VM Good Extra Application Bad
Hardware supported Depends Extra Kernel / no OS Good

Cooperation 
with host OS
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techniques,  such  as  previrtualisation,  are  being 
researched and look promising.

We found that the new hardware support is likely to 
be  very  useful,  but  that  it  may  not  replace  other 
techniques  completely.  Each of  the  techniques  we 
discussed  has  advantages  for  specific  areas  of 
application. Therefore, selecting the proper approach 
can be hard as many factors should be considered.
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9 Products mentioned
Bochs http://bochs.sourceforge.net/
BurnNT http://l4ka.org/projects/virtualizatio

n/burnnt/ 
FreeBSD http://www.freebsd.org/
Java http://java.sun.com/
Linux V-Server http://linux-vserver.org/
Marzipan http://l4ka.org/projects/virtualizatio

n/resourcemon/ 
Microsoft .NEThttp://www.microsoft.com/net/
Microsoft 
VirtualPC

http://www.microsoft.com/Wind
ows/virtualpc/

Microsoft 
Virtual Server

http://www.microsoft.com/windows
serversystem/virtualserver/

OpenVZ http://openvz.org/
Parallels 
Workstation

http://www.parallels.com/en/pro
ducts/workstation/

Qemu http://fabrice.bellard.free.fr/qemu
/

Serenity Virtual 
Station

http://www.serenityvirtual.com/

Solaris Zones http://www.opensolaris.org/os/co
mmunity/zones/

User Mode 
Linux

http://user-mode-
linux.sourceforge.net/ 

VMWare ESX 
Server

http://www.vmware.com/products/v
i/esx/ 

VMWare 
Workstation

http://www.vmware.com/product
s/ws/

Xen http://www.xensource.com/
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